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Abstract
This study compares two distinct approaches, pooling forecasts from single indicator
MIDAS models versus pooling information from indicators into factor MIDAS mod-
els, for short-term Singapore GDP growth forecasting with a large ragged-edge mixed
frequency dataset. We consider various popular weighting schemes in the literature
when conducting forecast pooling. As for factor extraction, both the conventional
dynamic factor model and the three-pass regression filter approach are considered.
We investigate the relative predictive performance of all methods in a pseudo-out-of-
sample forecasting exercise from 2007Q4 to 2020Q3. In the stable growth non-crisis
period, no substantial difference in predictive performance is found across forecast
models. In comparison, we find information pooling tends to dominate both the quar-
terly autoregressive benchmark model and the forecast pooling strategy particularly
during the Global Financial Crisis.
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1 Introduction

When projecting future economic growth, it is common for forecasters and decision
makers to draw on information from a wide variety of economic and financial indi-
cators sampled at different frequencies. For instance, central bankers would use a
host of domestic and foreign indicators, some of which are monthly variables, to pro-
duce short-term forecasts of quarterly GDP growth. This is particularly useful in a
fast-evolving environment such as in a crisis where the information content of higher
frequency variables provides a timelier assessment of current and near-term future eco-
nomic conditions. The traditional approach to dealing with mixed frequency data is to
time-aggregate the higher frequency variables to a lower frequency. However, tempo-
ral aggregation may lead to inefficient and inconsistent estimation of the parameters
(Andreou et al. 2010). Besides, time aggregation would also lead to a loss of valuable
high frequency information at the end of the indicator series. There are various meth-
ods to exploit the information in higher frequency data to predict a lower frequency
variable. In particular, the mixed-data sampling framework (MIDAS) due to Ghysels
et al. (2004) and Ghysels et al. (2007) directly relates mixed frequency variables in
a highly parsimonious way. Since the seminal work of Clements and Galvão (2008,
2009), there has been a burgeoning literature on the application of MIDAS techniques
to macroeconomic forecasting, such as for large economies like the US and the euro-
area (Armesto et al. 2010; Foroni and Marcellino 2014). Applications to small open
economies are found in more recent studies such as Rusnák (2016) for Czech; Kim
and Swanson (2018) for Korea; Yau and Hueng (2019) for Taiwan; Galli et al. (2019)
for Switzerland; den Reijer and Johansson (2019) for Sweden; Laine and Lindblad
(2021) for Finland; and Marcellino and Sivec (2021) for Luxembourg.

In addition to dealing with data of different frequencies, forecasters often need to
consider what strategies to adopt to pool the predictive content from a large num-
ber of variables. After all, the traditional approach of selecting only a few indicators
and performing forecasting using a small- scale model is problematic as the informa-
tion content of individual indicators would tend to vary over time. The two common
approaches to extract the predictive content from a large number of variables into
GDP growth forecasts are pooling forecasts from many single indicator MIDASmod-
els versus pooling a large amount of information into a few factors for inclusion into
a single factor-based MIDAS model. Another promising approach to forecast with a
huge mixed frequency dataset is to use penalised regressions, such as Lasso or elastic
net. Recent contributions along this line includeUematsu and Tanaka (2019) and Babii
et al. (2021). Since the computational costs of these techniques are higher, we focus
on the forecast pooling and factor models approaches in this study.

It is well recognised that pooling forecasts from different models helps to average
out idiosyncratic errors arising from the misspecification of individual models. The-
oretical results are found in Timmermann (2006), while Bates and Granger (1969),
amongst others, provide empirical evidence. In comparison, pooling information from
multiple predictors into a single model can average out the noise from individual pre-
dictors, as shown in Forni et al. (2003). The debate on which of these two strategies
produce more accurate forecasts is fuelled by mixed evidence from empirical stud-
ies. Some in the literature, including Heinisch and Scheufele (2018) and Kuck and

123



Forecasting GDP with many predictors... 807

Schweikert (2021), provide empirical evidence that the pooled single indicator fore-
casts strategy outperforms the factor-based information pooling approach in the case
of Germany, while Kuzin et al. (2013) show otherwise for six industrialised coun-
tries. A natural question that arises is which of these two pooling strategies is more
beneficial for forecasting in the context of a small open economy.

For the information pooling strategy, a critical question to consider is how to
extract informative factors from a large unbalanced panel of indicators. In conven-
tional dynamic factor models, the factors represent the underlying movement in the
predictors. They can be estimated using either static or dynamic principal components
as proposed in Stock andWatson (2002) and Forni et al. (2005), withmissing data han-
dled by EM algorithm or vertical realignment. Another popular approach, discussed in
Doz et al. (2011), is to cast the factor model into a state-space form before applying the
Kalman filter and smoother. Marcellino and Schumacher (2010) provide more details
on these approaches in a MIDAS context. More recently, Hepenstrick and Marcellino
(2019) proposed a mixed frequency three-pass regression filter (MF-3PRF), which
is built upon the work of Kelly and Pruitt (2015). This method enables us to obtain
targeted factors in an intuitive and less computationally intensive manner, thereby
overcoming the drawback of principal components-based methods that ignore the
comovement between indicators and the variable of interest when computing factors.

This study focuses on the short-term forecasting of quarterly real GDP growth of
Singapore, an archetypal small open economywhere external factors play a prominent
role in driving domestic fluctuations. We construct a large, ragged-edge panel dataset
of 95monthly variables comprising domestic and foreign indicators that reflect impor-
tant aspects of the Singapore economy. To assess the forecast performance of the two
approaches, we conduct a pseudo-out-of-sample GDP fore- casting exercise by recur-
sively generatingGDPgrowth forecasts for the period 2007Q4 to 2020Q3.Within each
approach, we generate the forecasts using a variant of the basic MIDAS model known
as the autoregressive distributed lag unrestricted MIDAS (ADL-U-MIDAS) model.
This model simply regresses current-quarter GDP growth on lagged GDP growth and
contemporaneous and lagged values of the predictors instead of using a functional
form restriction on the lags of the predictor as in the basic MIDAS framework. The
forecast evaluation period is split into the following three subperiods: a cycle which
includes the Global Financial Crisis (GFC), the COVID-19 pandemic crisis and the
non-crisis period in between.

This paper makes two main contributions to the literature. Firstly, the comparison
of the forecast pooling versus information pooling strategies adds to the evidence in
the literature on their relative usefulness for short-term forecasting of GDP growth
under different regimes, namely crisis versus non-crisis periods. Secondly, to the best
of our knowledge, our study is the first to apply theMIDAS technique to a large mixed
frequency dataset for forecasting Singapore quarterly GDP growth. Only a couple of
past studies adopt the MIDAS approach to forecast Singapore GDP growth, and all of
them use very few predictors. For instance, Tsui et al. (2018) employs only daily stock
prices in a MIDAS forecast model while Abeysinghe (1998) uses only the external
trade variable in a nonlinear dynamic regression model. Other studies that use many
indicators to forecast Singapore GDP growth do not employ the MIDAS technique.
For instance, Chow and Choy (2009a) generates Singapore GDP growth forecasts
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with a single frequency dynamic factor model using a large panel dataset whereby
higher frequency data are aggregated down to quarterly frequency to overcome the
mixed frequency problem. Our study fills the gap by applying the MIDAS framework
to forecast Singapore GDP growth with many indicators, which is important since the
multitude of external influences means forecasters need to consider not only domestic
indicators but also a myriad of foreign ones.

The rest of this paper proceeds as follows. The next section presents an overview of
the various forecastingmodels used in this study,while Sect. 3 provides a description of
the data and the empirical forecast procedure adopted. Section 4 reports and discusses
the findings of the pseudo-out-of-sample forecasting exercise. Section 5 concludes.

2 An overview of forecastingmodels

This section describes the models used in our study. We first offer brief descriptions of
a variant of MIDAS models and then discuss the factor MIDAS approach and mixed
frequency 3PRF.

2.1 Autoregressive distributed lag unrestrictedMIDAS (ADL-U-MIDAS) model

To simplify the description of themodel, we consider the case of a quarterly dependent
variable (yt ), which is Singapore GDP growth in this study, along with one monthly
indicator (xi,t ). The discussion can be extended in a straightforward fashion to incor-
porate more predictors. The ADL-U-MIDAS model has a forecast equation for h
quarters ahead as follows:

yt+h = β
(h)
0 +

J∑

j=0

β
(h)
1+ j L

j/3xi,t+w +
Q∑

q=0

γ
(h)
1+q L

q yt + εt+h (1)

where the disturbance term is assumed to be independently and identically distributed
(i.i.d.)with zero-mean and constant variance. In equation (1), L j/3xi,t+w = xi,t+w− j/3
is the lagged value of monthly indicator i . While the dependent variable is only avail-
able up to T , the last available observation of the regressor is at T + w. For example,
w = 1/3 corresponds to indicator information available for the first month of the fore-
cast quarter. Hence, the forecast at t = T is conditioned on the information set at T+w.
The superscript on the distributed lag term in equation (1) indicates skip-sampling of
monthly observations across quarters. The superscript h on the coefficients indicates
that they are specific to the forecast horizon due to direct forecasting. w = 1/3, 2/3
and 1 correspond to the nowcasts made at the beginning of the first, second and third
months of the forecast quarter, respectively.

Instead of having a weighting function depending on a low-dimensional parameter
as in the standard MIDASmodel proposed by Ghysels et al. (2007), we do not impose
any functional constraints on the distributed lags. The unrestricted model, proposed by
Foroni et al. (2015), increases flexibility in the specification and eschews estimation
via nonlinear least squares, thereby incurring a lower computational cost.Weutilise the
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unrestricted model in our empirical exercise in view of the small frequency mismatch
from mixing monthly and quarterly data, resulting in the estimation of relatively few
parameters. Following Andreou et al. (2013), the model in (1) is augmented by lagged
dependent variables

∑Q
q=0 γ

(h)
1+q L

q yt . In the rest of the paper, we will simply use the
abbreviation ‘MIDAS’ to refer to the ADL-U-MIDAS model. The benchmark model
we consider is an autoregressive model that involves only quarterly GDP data, and
whose forecast equation is the same as equation (1) but without the indicator terms.

2.2 Forecast pooling strategies

Given N single-indicator MIDAS models, one can pool the forecasts linearly using

ŷt+h =
N∑

i=1

ci,t ŷi,t+h

where ci,t denotes the weight given to indicator i in period t and ŷi,t is the forecast
of yt+h made using only xi,t . Though it is usually found in empirical research that
combining forecasts can lead to better performance than using individualmodels, there
is no consensus regarding how to choose the weighting schemes. Therefore, in this
study, we consider various methods that are commonly used in literature.

First, we consider a simple average of all forecasts (FP-EW), where the weight
is given as ci,t = 1/N . Though it does not take into account historical performance
of indicators, many studies have found that this simple method performs remarkably
well in out-of-sample exercise (Bec and Mogliani 2015; Galli et al. 2019; Kuzin et al.
2013).

Second, we consider giving a weight inversely proportional to the mean-square
forecast error (MSFE). The weights are given by:

ci,t = 1/MSFEi,t∑N
i=1 1/MSFEi,t

,

MSFEi,t =
t∑

s=t−3

(ys − ŷi,s)
2,

(2)

where ŷi,s ismodel i’s forecast for period s. Theoretically, this approach corresponds to
the optimal weighting scheme derived in Bates and Granger (1969) when all forecasts
are uncorrelated. It is possible to use a more general regression-based method instead
of assuming orthogonality. However, for the sake of simplicity, we follow the existing
literature and only consider the weights given in equation (2). The MSFE is computed
using a rolling window over previous four quarters (FP-ROLL) to better reflect the
rapid changes in the economy, following Stock and Watson (2004) and Kuzin et al.
(2013).
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Our third scheme assigns a weight proportional to the inverse of discounted MSFE
(DMSFE), as discussed in Stock and Watson (2004). The weights are given as

ci,t = 1/DMSFEi,t∑N
i=1 1/DMSFEi,t

,

DMSFEi,t =
t∑

s=T0+1

δt−s(ys − ŷi,s)
2,

(3)

where ŷi,s is again model i’s forecast for period s and T0 is the length of in-sample
period. The discount factor δ allows one to focus more on the recent performance of an
indicator while still accounting for all historical errors. Following Stock and Watson
(2004), we set δ = 0.95 in our empirical study. This scheme will be called FP-DISC.

The last schemewe consider sets the weight proportional to the inverse of a model’s
performance rank (FP-RANK). This approach is often more robust than other pooling
schemes, as ranks are less sensitive to the presence of outliers. With this method, the
weights are given as

ci,t = 1/ri,t∑N
i=1 1/ri,t

, (4)

where ri,t denotes the model i’s rank at period t determined by MSFEi,t defined in
equation (2) Specifically, indicators with lower MSFEi,t will rank higher and vice
versa. An alternative rank-method is to use median forecasts. However, we find that
this strategy is dominated by other methods in most cases. Hence, its performance is
not reported here and is available upon request.

2.3 Factor MIDASmodels

FactorMIDAS, originally proposed inMarcellino andSchumacher (2010), synthesises
dynamic factormodelswithMIDASmodels. The single indicators in theMIDASmod-
els described in the previous subsection are simply replaced with estimated monthly
factors. These few factors summarise the systematic information in our large dataset.
There are various factor extraction methods, but the literature on dynamic factor
models reports conflicting results on which is superior. Nonetheless, Marcellino and
Schumacher (2010) show that the choice of factor extraction technique does not sub-
stantially impact the short-term forecasting performance of factor MIDAS models.
Similarly, others such as Kuzin et al. (2013) find no systematic difference in forecast
accuracy across different factor extraction methods. In this study, we adopt the two-
step estimator by Doz et al. (2011), which relies on a state-space framework and can
handle the ragged-edge structure in the data panel.

The state-space model for monthly variables and monthly factors is given below:

Xt = φ + �Ft + ξt (5)

	(L)Ft = Bηt (6)
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where Xt is a n×1 vector of monthly indicators,� is a n×r matrix of factor loadings
for the r static factors, and ξt is the idiosyncratic component. Equation (5) is the
static factor representation as in Stock and Watson (2002). Equation (6) specifies the
dynamics of the factors using a vector autoregression (VAR) of order p. ηt is a q × 1
vector of dynamic shocks orthogonal to the factors and their lags	(L) = ∑p

i=1 ψi Li

, and B is an r × q coefficient matrix.
Banerjee et al. (2005) reveals a considerable decline in forecast performance in

models whenmany factors are used. Using up to a maximum of six factors, Marcellino
and Schumacher (2010) find that only the factor MIDAS models based on one or two
factors have predictive content for German GDP. Hence, we follow Galli et al. (2019)
in setting p = 1 for the sake of parsimony and consider r = 1, 2 or 3. We will denote
factor MIDAS models with one, two and three factors by DFM1, DFM2 and DFM3,
respectively.

Unlike static principal components analysis (PCA), the state-space approach explic-
itly specifies the dynamics of the factors.As the dimension of Xt is large for our dataset,
iterative maximum likelihood is not feasible. Instead, single-step Kalman smoothing
is applied outside the model. The estimation procedure to extract the factors is as
follows:

1. Static PCA is used to produce factor estimates F̂t using a balanced dataset (trun-
cated at the end of sample).

2. The factor loading matrix � is estimated by regressing Xt on F̂t , hence obtaining
the estimated covariance matrix of idiosyncratic components ξ̂t .

3. The VAR of order p = 1 is estimated to obtain 	̂(L) and the residual covariance
matrix.

4. Kalman smoothing applied over the unbalanced dataset produces the updated esti-
mate F̂t .

The extracted monthly factors are then plugged in MIDAS forecasting equation

yt+h = β
(h)
0 +

J∑

j=0

β
(h)
1+ j L

j/3 F̂t+w +
Q∑

q=0

γ
(h)
1+q L

q yt + εt+h, t = 1, 2, . . . , T (7)

to forecast quarterly GDP growth.

2.4 Mixed frequency 3PRF

Factor MIDAS models introduced in the last section are built upon conventional prin-
cipal component analysis and they do not take into account the targeted variable when
extracting factors. There are various approaches available in the literature to compute
targeted factors. For instance, Bai and Ng (2008) propose hard and soft thresholds,
while Fuentes et al. (2015) consider partial least squares.

In this study, we consider mixed frequency three-pass regression filter recently
proposed inHepenstrick andMarcellino (2019), who extend the 3PRFmethod inKelly
and Pruitt (2015) to amixed frequency context.MF-3PRF enables us to obtain targeted
factors for forecasting a specific variable of interest, rather than only summarising
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the information in a large number of predictors. Moreover, it has several asymptotic
optimality properties and is quite straightforward to implement, being primarily based
on ordinary least squares. Based on a dataset drawn from many different countries,
Hepenstrick andMarcellino (2019) andMarcellino and Sivec (2021) provide evidence
that MF-3PRF is a promising tool for nowcasting GDP growth.

Kelly and Pruitt (2015) consider the following model:

yt+h = β0 + β ′Ft + εt+h

zt = λ0 + �Ft + ωt

Xt = φ0 + �Ft + ηt

(8)

where Ft = ( f ′
t , g

′
t )

′ are the K = K f + Kg common factors driving all indicators;
β = (β ′

f , 0
′)′, such that yt+h only depends on ft and not on gt ; zt is a small set of l

proxies of target variable yt such that � = (� f , 0) with � f non-singular. Compared
with the conventional factor-based forecasting model, here the large dataset Xt is
possibly driven by more factors than the target variable yt . It is well-known that, in
finite samples, estimating and using only relevant factors ft would improve forecast
performance. Kelly and Pruitt (2015) propose a general and simple method in model
(8), based on three steps of OLS regressions. They show that their factor estimator
is consistent and the 3PRF forecast converges to the unfeasible forecast, generated if
factors were observable, in large samples.

To nowcast quarterly GDP growth using the 3PRF methodology, Hepenstrick and
Marcellino (2019) consider the case in which the target variable yt (or the proxies zt )
are of lower frequency than predictors Xt . TheirMF-3PRFmethod can be summarised
in three steps as follows.

• Pass 1: Run a (time-series) regression, in quarterly frequency, of each element of
Xt , x̃i,t on the proxy variables zt .

x̃i,t = α0,i + z′tαi + ui,t , t = 1, . . . , T , (9)

for each i = 1, . . . , N and store the OLS estimate α̂i . Here, x̃i,t = xi,3t +xi,3t−1+
xi,3t−2 for t = 1, . . . , T is the quarterly aggregation of monthly indicators.
Monthly indicators is cumulated in such a way as this transformation replicates the
temporal aggregation applied to (unobservable) month-on-month GDP growth. As
pointed out in Marcellino and Sivec (2021), this step is a key element to ensure
the consistency ofMF-3PRF estimation. Since Hepenstrick andMarcellino (2019)
find that adding more factors tends to decrease forecasting performance of MF-
3PRF method, we only consider the case of a single factor ft . As for the number
of proxies, results not reported here show that allowing for more proxies in our
case will not improve the forecast performance. Therefore, we following Kelly
and Pruitt (2015) and simply use the target variable yt as the proxy zt .

• Pass 2: Run a (cross-sectional) regression of xi,t on α̂i :

xi,t = α0,t + α̂′
i Ft + εi,t , i = 1, . . . , N , (10)
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for each month t = 1, . . . , 3T and retain the OLS estimate F̂t .
• Pass 3: Split the estimatedmonthly factors F̂t obtained in Pass 2 into three quarterly
factors and forecast the target variable using a MIDAS regression similar to (7).

Hepenstrick andMarcellino (2019) argue thatMF-3PRF inherits the consistency prop-
erties of 3PRF and they also discuss how to deal with other data irregularities such as
ragged edges. In our empirical study, we consider two methods in this regard. The first
method simply fits an autoregressive AR(2) model to each individual time series with
a ragged edge, and fills in the missing observations at the end of the series using pre-
dicted values. This approach is quite intuitive and computationally straightforward.We
call the corresponding model as 3PRF-AR2. The second version we consider relies on
Kalman filter algorithm to handle the ragged edges, which leads to the best linear esti-
mates conditional on a correct specification. Besides having to meet the assumption of
correct specification, this method has the disadvantage of computational complexity.
We denote this model as 3PRF-KF.

3 Data and empirical procedure

3.1 Data

Our large-scale dataset comprises 95 monthly indicators, mostly collected from the
CEIC and FRED databases. CEIC and FRED collect data from various official sources
such as government agencies, national statistical sources and multilateral organi-
sations. To achieve more parsimonious model specifications, weekly indicators are
time-aggregated to monthly frequency. Our dataset is similar to that of Chow and
Choy (2009b), and a complete data listing is found in Appendix A. The broad cate-
gories of data are the GDP and leading indicators of major trading partners, foreign
financial data, world electronics sales and indexes, world prices, industrial production,
business expectations, sectoral indicators, external trade, domestic prices, financial
indicators and exchange rates, and monetary and credit aggregates. The download
date is 2 January 2021.

Data for some series are available as early as 1955, but we perform the empirical
exercise using information from 1990Q1 to 2020Q3, for which we have data for the
vast majority of the time series. The different publication delays of the indicators result
in an unbalanced panel dataset with a ragged edge. Due to a lack of data availability,
we are unable to obtain real-time vintages and can only simulate a ‘pseudo-real-time’
forecasting scenario. However, we think this need not be a concern since past studies,
including Boivin and Ng (2005) and Schumacher and Breitung (2008), have shown
that data revisions do not considerably impact forecast accuracy.

The data collected have generally been seasonally adjusted. Otherwise, manual
adjustment is performed using the X-13 ARIMA procedure whenever seasonality is
detected in the time series. We determine at the 5% significance level the order of
integration of the individual series based on the Augmented Dickey–Fuller breakpoint
unit root test and the KPSS test. The breakpoint unit root tests are conducted for the
period January 1990 to December 2019, i.e. just before the onset of the COVID-19
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pandemic crisis. The results of the unit root tests are available from the authors upon
request.

Appropriate transformations are taken to induce stationarity in the series, and these
mostly involve taking the first difference or log-difference to obtain month-on-month
growth rates. A caveat to our main findings would be that these data alterations require
full sample information. We do not remove outliers from the data because such a
procedure would also rely on full sample information and may bias the results towards
finding better forecast performance. The data listing in Appendix A provides details
on the data sources, applied transformations and publication lags of the individual
indicators.

3.2 Short-term forecasting procedure

Our full sample period is divided into the estimation and evaluation periods. In the
first instance, we estimate eachmodel over the initial sample from 1990Q1 to 2007Q3,
selecting the lag lengths for the predictors based on the Bayesian Information Criterion
(BIC), with a maximum of 12 lags (1 year) for the monthly indicators. The first
set of forecasts are thus generated for 2007Q4. We choose the BIC instead of other
information criteria like the Akaike information criterion (AIC) or Hannan–Quinn
information criterion (HQ) because it tends to selectmore parsimoniousmodels, which
is typically favourable for forecasting.

Following this, we expand the estimation window forward by one quarter, re-select
the lag lengths and re-estimate themodel coefficients. The forecast is then computed for
2008Q1. This procedure continues recursively until forecasts for the entire evaluation
period from 2007Q4 to 2020Q3 are generated. We use direct multistep forecasting,
whereby a different forecast model is estimated for each horizon. An advantage of the
direct method over the iterative approach is that misspecification in the one-step-ahead
case is not carried over to the multistep-ahead forecasts. Another advantage of direct
forecasting is that we do not have to specify the change in unobserved factors over
time for factor-based models (see Marcellino et al. 2006).

We denote h = i/3 as hi for i = 1, 2, . . . , 6 here and for the rest of the paper.
We consider monthly forecast horizons from h1 to h6 and generate a sequence of six
forecasts for each evaluation quarter. For instance, for the evaluation quarter 2019Q1,
forecasts are computed on the 2nd of January, February and March 2019, correspond-
ing to h3, h2 and h1, respectively, and these current quarter forecasts are also known as
‘nowcasts.’ Horizons h6, h5 and h4 refer to the one-quarter-ahead forecasts produced
on 2nd of October, November and December in 2018, respectively. Each forecast is
generated based on the information set available up to that point. The ragged edge
structure in each recursion of our estimation procedure is replicated by imposing the
same number of missing values observed for each indicator as at the end of the sample.
In doing so, we implicitly assume stability in the publication lag structure.

For all single-indicator MIDAS models, the maximum lag length of lagged depen-
dent variables is four quarters or one year. We consider the fact that the GDP of a
particular quarter is released towards the end of the second month of the next quarter.
The effective forecast horizons needed for computing the forecasts are longer when
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we account for the publication lag of GDP. For instance, when we are predicting GDP
growth at 2019Q1 from 2 February 2019, the end of sample data vintage would then
comprise GDP data up to 2018Q3. This means we effectively require a two-quarter
ahead forecast from the end of the GDP sample. Specifically, the maximum number
of lagged dependent variables considered in the models will be four when the forecast
horizon is h1, three for horizons h2, h3 and h4, and two for horizons h5 and h6. For
instance, if the evaluation quarter is 2019Q1, last quarter’s GDP growth at 2018Q4
would have been published and can therefore be used for forecasting in March 2019.
However, the 2018Q4 GDP growth figure would not be available when forecasting
from December 2018 to February 2019, so that a maximum of three lagged dependent
variables is considered. When forecasting in October 2018 and November 2018, both
2018Q4 and 2018Q3GDP growth figures would not be observed, so that themaximum
number of lagged dependent variables is two.

As a measure of forecast accuracy, we compute the root mean square forecast
error (RMSE) for the entire evaluation period and three subperiods. For robustness
checks, we use the mean absolute forecast errors instead of the root mean square
forecast error but find that the qualitative conclusions are the same. These results are
available from the authors upon request. Since the full evaluation period includes the
occurrence of two crises, it is split into three subperiods: 2007Q4 to 2010Q2; 2010Q3
to 2019Q4; and 2020Q1 to 2020Q3 for the cycles that include the GFC, non-crisis
and COVID-19 pandemic subperiods, respectively. We evaluate the two approaches,
namely forecast pooling versus information pooling, by comparing theRMSEobtained
from the individual approaches to the RMSE from a quarterly autoregressive model.
For the autoregressive model, as with all other models, we replicate the publication
lags of GDP, select the number of lags by BIC, and use an expanding window strategy.
The maximum lag length is four, considering the release date of GDP growth in the
same way as for the single-indicator MIDAS models.

Since differences in forecast accuracy between two competing models may be
attributed to chance, we employ a test for equal predictive accuracy proposed by
Coroneo and Iacone (2020). This test (henceforth ‘DM-CI test’) modifies the Diebold
and Mariano (2002) test statistics to overcome the prevalence of negative variance
estimates that typically arise in smaller samples and with forecasts at longer horizons.
This is applicable to our study as we found in the computation of Diebold–Mariano
test statistics that our variance estimates tend to be negative for longer horizons such
as at h5 and h6, especially when we perform the tests separately for the short cri-
sis subperiods. In the DM-CI test statistic, the standard rectangular kernel estimator
used in the Diebold–Mariano statistic is replaced with a Daniell kernel to form the
weighted periodogram estimator as follows. For a given bandwidth m, we denote the
periodogram of the loss differential at time t (dt ) for the Fourier frequency λ j = 2π j

T
for j = 0, 1, . . . ,m by

I (λ j ) =
∣∣∣∣∣

1√
2πT

T∑

t=1

dte
−iλ j t

∣∣∣∣∣

2
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where i = √−1. Then, the DM-CI test statistics is given by

DMCI = √
T

(
d̄

V̂ (d̄)

)
d−→ t2m

where V̂ (d̄) = 2π
m

∑m
j=1 I (λ j ). Considering the size-power trade-off when determin-

ing the bandwidth, we follow Harvey et al. (2017) in setting m = T
1
3 . We implement

the test by adapting codes courtesy of Coroneo and Iacone.

4 Empirical results and discussion

In this section, we report the forecast accuracy of the models by generating ‘nowcasts’
and one-quarter-ahead forecasts of Singapore’s GDP growth. To provide an overall
description of Singapore’s economic performance during our sample period, we first
plot the time series of its quarterly GDP growth in Fig. 1. Three significant recessions,
including the Asian Financial Crisis, GFC and COVID-19 pandemic, are highlighted.
Also plotted are the normalised estimated factors extracted using the first principal
component and the three-pass regression filter. Both methods generate factors which
trend similarly and closely track GDP growth fluctuations.

Figures 2, 3, 4 and 5 present the relative RMSEs of various pooling strategies
over the autoregressive benchmark for the whole sample period and three subperiods,
respectively. The benchmark model is an autoregression of the quarterly GDP series
whose optimal lag length is determined by the BICwith a maximum lag length of four.
Like all the other models in this paper, it is estimated with an expanding window. The
length of each bar indicates the relative RMSE of a model, with its value displayed
at the end of each bar and the threshold of an RMSE equal to one indicated by a red
vertical line. In this way, a number less than one, or equivalently a bar to the left of the
red line, indicates that the forecast pooled from the single indicator models or based
on pooled information is more accurate than the benchmark forecast. ‘***,’ ‘**’ and
‘*’ indicate the significance at the 1%, 5% and 10% levels, respectively, according to
the DM-CI two-sided test and the numbers in parentheses are the p-values. The best
performing model for a given horizon is highlighted in yellow, while bars with black
edges indicate statistical significance at the 10% level.

4.1 Comparison of forecast pooling schemes

We see from Fig. 2 that, for the whole sample, the forecast pooling approaches gener-
ally outperform the benchmark at the shorter horizons from h1 to h3 but under-perform
relative to the benchmark at horizons h4 to h6. However, none of the differences in
RMSE between the forecast poolingmodels and the benchmark are statistically signif-
icant at the conventional levels. There are interesting differences across the different
subperiods. The poor performance at the longer horizons reflects the low forecast
accuracy of the forecast pooling methods at these horizons during the pandemic cri-
sis, as shown in Fig. 5. In contrast, we observe from Fig. 3 that the forecast pooling
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Fig. 1 GDP growth rate and estimated factors: the figure presents the monthly static 3PRF factor (blue solid
line) and the first principal component (red dotted line), both estimated using the full sample. Also plotted
are observed quarterlyGDPgrowth rates (grey bars). To extract each factor, only cross-sectional information
is used. Shaded areas are three recession periods, namely Asian Financial Crisis, Great Financial Crisis
and COVID-19 pandemic. Both factors are normalised to have zero mean and unit variance. (Color figure
online)

methods systematically outperform the benchmark across all six horizons during the
GFC period. There are more considerable gains of up to 15% at horizons h1 and h2,
and some of the improvements are statistically significant at the 10% level at horizons
h1 and h4. As for the non-crisis period, the gains in forecast accuracy are all less than
10% and statistically insignificant at conventional levels (see Fig. 4).

Table A.1 (available in Online Appendix) records the RMSEs of alternative weight-
ing schemes relative to the simple average method to facilitate comparisons across the
different forecast combination methods. The relative RMSE figures smaller than one
are recorded in bold. Each figure ismarked by an asterisk(s) whenever the difference in
relative RMSE is statistically significant as determined by the results of the two-sided
DM-CI tests of equal predictive accuracy. The figures in red indicate the best strategy
for a particular horizon (when two models have the same relative RMSE, we choose
the one with a smaller p-value).We can conclude fromTable A.1 that all threemethods
are, in general, no worse than the simple average approach, and they could signifi-
cantly outperform it at the short horizons. Specifically, the FP-ROLL and FP-DISC
weighting schemes show statistically significant gains of about 3% to 5% over the
simple average method in the GFC period at horizons h1 and h2. By incorporating the
past performance of different predictors, these pooling strategies can generate more
accurate nowcasts.

The combination strategies involve time-varying weights based on the past perfor-
mance of all single indicator models. This allows us to investigate which variables are
more informative for predicting Singapore GDP growth. To this end, Fig. 6 plots the
horizon-specific heat maps of forecast pooling weights, where darker blue indicates
larger weights. For better visualisation, the average pooling weights are computed for
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Fig. 2 Relative RMSE over AR (whole period): this figure presents the relative RMSE of various pooling
strategies over the AR benchmark for the evaluation period 2007Q4 to 2020Q3. The height of each bar
indicates the relative RMSE and its value is displayed at the tips of each bar. ‘***,’ ‘**’ and ‘*’ indicate
statistical significance at the 1%, 5% and 10% levels, respectively, according to the Coroneo–Iacone two-
sided test. The numbers in parentheses are the p-values. The red vertical line indicates RMSEs equal to
one. h1 to h6 denote the forecast horizons. Yellow bars indicate the best performer for a horizon. Bars with
black edges indicate that the model is significant at least at the 10% level. (Color figure online)

Fig. 3 Relative RMSE over AR (GFC period): this figure presents the relative RMSE of various pooling
strategies over the AR benchmark for the evaluation period 2007Q4 to 2010Q2. The height of each bar
indicates the relative RMSE and its value is displayed at the tips of each bar. ‘***,’ ‘**’ and ‘*’ indicate
statistical significance at the 1%, 5% and 10% levels, respectively, according to the Coroneo–Iacone two-
sided test. The numbers in parentheses are the p-values. The red vertical line indicates RMSEs equal to
one. h1 to h6 denote the forecast horizons. Yellow bars indicate the best performer for a horizon. Bars with
black edges indicate that the model is significant at least at the 10% level. (Color figure online)
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Fig. 4 RelativeRMSEoverAR (non-crisis period): this figure presents the relativeRMSEof various pooling
strategies over the AR benchmark for the evaluation period 2010Q3 to 2019Q4. The height of each bar
indicates the relative RMSE and its value is displayed at the tips of each bar. ‘***,’ ‘**’ and ‘*’ indicate
statistical significance at the 1%, 5% and 10% levels, respectively, according to the Coroneo–Iacone two-
sided test. The numbers in parentheses are the p-values. The red vertical line indicates RMSEs equal to
one. h1 to h6 denote the forecast horizons. Yellow bars indicate the best performer for a horizon. Bars with
black edges indicate that the model is significant at least at the 10% level. (Color figure online)
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Fig. 5 Relative RMSE over AR (COVID-19 period): this figure presents the relative RMSE of various
pooling strategies over the AR benchmark for the evaluation period 2020Q1 to 2020Q3. The height of bars
indicates the relative RMSE and its value is displayed at the tips of each bar. ‘***,’ ‘**’ and ‘*’ indicate
statistical significance at the 1%, 5% and 10% levels, respectively, according to the Coroneo–Iacone two-
sided test. The numbers in parentheses are the p-values. The red vertical line indicates RMSEs equal to
one. h1 to h6 denote the forecast horizons. Bars with yellow face colour indicate the best performer for a
horizon. Bars with black edges indicate that the model is significant at least at the 10% level. (Color figure
online)
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Fig. 6 Heatmaps of average forecast pooling weights: this figure displays horizon-specific heatmaps for
the forecasting weights over the evaluation period spanning from 2008Q1 to 2020Q3. For each category,
we compute the average forecasting weights, where the weight for an indicator is inversely proportional to
its discounted MSFE (discount rate = 0.95). Publication lags of all indicators are taken into account when
weights are computed. Higher average weights are indicated by darker areas. h1 to h6 denote the forecast
horizons

the different categories of indicators described in Sect. 3.1. We present the results of
the FP-DISC strategy since it leads to more stable weights and hence more recognis-
able patterns. It is clear from Fig. 6 that, for all evaluation periods and all forecast
horizons, Foreign GDP indices which include the GDP and composite leading indexes
of its major trading partners are crucial for forecasting Singapore GDP growth. This
is consistent with the small-open-economy nature of Singapore. Other significant
short-horizon predictors are those in the Industrial Production and External Trade
categories, while Foreign Stock Prices indices become increasingly important as the
horizon lengthens. These findings suggest that real macro variables are more relevant
for nowcasting current-quarter GDP growthwhile the financial indicators, perhaps due
to their forward-looking nature, provide additional information for short-term fore-
casting. This is in line with Tsui et al. (2018), who also find financial indicators are
better predictors of GDP when they are lagged by about a month or more.

4.2 Comparison of information pooling approaches

Turning to the information pooling approach, we see from Fig. 2 that, with a few
exceptions, both the factor MIDAS and MF-3PRF strategies clearly outperform the
benchmark model for the whole sample particularly at the first four horizons. The
vast majority of the gains exceed 20%, and two of the improvements are statistically
significant at horizons h1 and h2. The exceptions are the 3PRF-AR2method at horizons
h1 and h4, which are due to forecast failure at the onset of the pandemic (see Fig.
5). Nonetheless, during the COVID-19 crisis, we observe substantive gains ranging
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from 29% to 48% in forecast accuracy for the factor-MIDAS models and a dramatic
improvement of 54% at the four-month horizon for the 3PRF-KF model. However,
none of the DM-CI statistics are statistically significant due to the small number of
forecasts in the COVID-19 crisis subperiod that would lead to a large variance of the
squared forecast error difference.

Referring to Fig. 3, the information pooling strategies outperform the benchmark
model consistently during the GFC subperiod. Factor MIDAS produces statistically
significant gains of 4% to 17% at h1, while MF-3PRF yields statistically significant
improvements of 18%,28%and23%ath1,h4 andh6. In particular, 3PRF-KF is thebest
performing model at most horizons. Notably, the gains in forecast accuracy are greater
during the GFC period compared with the non-crisis period for all horizons. During
the non-crisis period, improvements in forecast accuracy up are obtained mostly at
horizon h1, with only one of these gains exhibiting statistical significance (see Fig. 4).

Factor MIDAS models and MF-3PRF are extensions of single frequency DFM
and 3PRF to the mixed frequency case. Instead of time-aggregating the monthly data
to quarterly frequency, these techniques exploit the newly-published high frequency
information within the quarter into forecasts, which could explain the improvement
in forecast accuracy over the benchmark models at short horizons. Our results are
broadly consistent with those of Marcellino and Schumacher (2010) and Hepenstrick
and Marcellino (2019), who also find factor MIDAS and MF-3PRF approaches are
better than single frequency time series models for short-term forecasting of GDP.

4.3 Comparison between information and forecast pooling

We next perform a direct comparison of forecast accuracy between the information
pooling and forecast pooling strategies, focusing on the better performing models.
Table 1 records the RMSEs of the forecasts from two information pooling approaches,
namely DFM2 and 3PRF-KF, as a ratio to the RMSEs of the corresponding forecasts
from the forecast pooling approach based on inverse rolling MSFE weights. These
information pooling approaches are selected to represent the dynamic factor MIDAS
model and mixed frequency three pass regression filter methods, respectively. The
format is similar to Table A.1.

We see from Table 1 that information pooling tends to outperform forecast pooling
in the GFC subperiod. Nonetheless, we obtain statistical significance in the differences
in predictive accuracy only at the four-month horizon. These gains for the DFM2 and
3PRF-KFmodels are large at 17% and 25%, respectively. It appears that the 3PRF-KF
method outperforms the DFM2model during the GFC subperiod at all horizons except
h3. As for the COVID-19 crisis subperiod, the forecasts from both information pooling
approaches are more accurate than those from pooled single indicator models at all but
the shortest horizon. The gains from factor MIDAS forecasts are considerable ranging
from 24% to 46% at horizons up to four months ahead, while the 3PRF-KF forecasts
offer an impressive 60% gain at h4 during the pandemic. Again, we do not observe
statistical significance in the differentials due to the small number of observations in
this subperiod. In contrast, forecast pooling tends to yield lower RMSEs compared
to the information pooling methods at all but the shortest horizon in the non-crisis
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period. However, the differentials are statistically significant only at horizons h5, at
10% and 14% for DFM2 and 3PRF-KF, respectively, for this stable growth period.

To aid the discussion of results, forecast plots for each subperiod are generated
from FP-ROLL, DFM2 and 3PRF-KF approaches for the six individual horizons are
displayed in Figs. A.1 to A.3 (available in Online Appendix), respectively.We observe
that real output growth, as plotted in Fig. A.1, plunged during the GFC, and there was
some volatility in the immediate aftermath of the crisis. However, real GDP growth
soon steadied and remained fairly stable till the onset of the pandemic crisis (see Fig.
A.2). It appears that all pooling strategies have similar performance in this stable non-
crisis subperiod, apart from the greater volatility in the forecasts from information
pooling models compared to those from the pooled single indicator models. We agree
with Tay (2007) that any reasonable forecasting model, including the quarterly autore-
gressive benchmark model, would record decent forecast performance during a stable
period. Hence, the absence of substantial gains in forecast accuracy between the indi-
vidual pooling approaches versus the benchmark model in the non-crisis subperiod,
as seen in Fig. 4, is not surprising.

It follows that the choice between the forecasting approaches lies more in their
predictive ability in the crisis subperiods when the economic environment is fast
evolving. We see from the forecast plots in Figs. A.1 to A.3 that the pooled indicator
forecasts are less volatile than the actual data at the individual horizons.While pooling
forecasts would aid in the cancelling out of misspecification errors of single indicator
models, averaging over such a large number of models could have resulted in overly-
smooth forecasts that fail to sufficiently capture the dive in GDP growth during the
GFC and COVID-19 crises (see the blue lines in Figs. A.1 and A.3, respectively).
Similarly, Galli et al. (2019) find that forecast pooling produces less volatile forecasts
that are not flexible enough to capture sudden swings in output growth in Switzerland.
By contrast, the charts show that information pooling forecasts can better track rapid
changes in output growth during crises (see the red lines in Figs. A.1 and A.3). This
observation is consistent with the higher forecast precision reported in Table 1 for the
information pooling approach vis-a-vis the forecast pooling approach during crises.
In other words, the visual comparisons are in agreement with the numerical results.

5 Conclusion

In this paper, we evaluate forecast pooling across a large set of single indicatorMIDAS
models versus pooling information from indicators into factor MIDAS models to pre-
dict Singapore GDP growth. It is well recognised that the publication lag of quarterly
GDP growth hampers the early assessment of the current and near-term economic
environment. Hence, using higher frequencies such as monthly indicators provides
more timely information on economic fluctuations, particularly in fast-evolving con-
ditions such as in a crisis. Both pooling approaches under study aim to extract the
predictive content from our large-scale ragged-edge dataset that spans the GFC, the
COVID-19 pandemic crisis and the non-crisis period.

We find that for forecast pooling, various weighting schemes lead to small dif-
ferences in predictive accuracy. Consistent with the small-open-economy nature of

123



824 H. K. Chow et al.

Singapore, we show that indicators related to external sectors are more critical for
improving out-of-sample performance. Moreover, forecast pooling tends to generate
more accurate forecasts than the benchmark model during the GFC but not in the
non-crisis period. Since Singapore’s output growth was fairly stable in normal times,
we expect any reasonable predictive model to record a decent forecast performance.
Indeed, we found that neither pooling strategy records substantive improvements to
the forecast performance of the quarterly autoregressive benchmark model in the non-
crisis subperiod.

Conversely, larger differentials in the predictive ability of the two pooling
approaches were recorded during crisis subperiods. Our results indicate information
pooling, using either dynamic factor models or mixed frequency three pass regression
filters, tends to dominate both the benchmark model and forecast pooling during the
GFC crisis. Most of the improvements in forecast accuracy are evident at the shorter
horizons and are statistically significant at various horizons. Overall, the findings sug-
gest the information pooling strategy has superior short-term predictive ability during
crisis periods as it is better suited to capture the myriad of shocks hitting the small
open economy in periods of wide economic fluctuations.
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Data Source Transformation Publication lag

0. Real GDP (quarterly) CEIC Dln 2 months
Foreign GDP
indices/composite lead-
ing indicators (6)

1. Major 5 Asia GDP index FRED Dln 4 months
2. US CLI OECD Deviations from trend 1 month
3. Japan CLI OECD Deviations from trend 1 month
4. UK CLI OECD Deviations from trend 1 month
5. Major 5 Asian CLI OECD Deviations from trend 1 month
6. 4 Big European CLI OECD Deviations from trend 1 month
Foreign stock prices (11)
7. NASDAQ Composite Index (US) CEIC Dln None
8. Nikkei 225 (Japan) CEIC Dln None
9. DAX (Germany) CEIC Dln None
10. FTSE100 (UK) CEIC Dln None
11. KOSPI (Korea) CEIC Dln None
12. FTSE Bursa (Malaysia) CEIC Dln None
13. JKSE (Indonesia) CEIC Dln None
14. SET Index (Thailand) CEIC Dln None
15. PSEI (Philippines) CEIC Dln None
16. Shanghai Composite Index (China) CEIC Dln None
17. TSWE (Taiwan) CEIC Dln None
Foreign real interest rates (3)
18. US (3-month
treasury bill rate-
CPI inflation)

CEIC D 1 month

19. Japan (3-month TIBOR-CPI inflation) CEIC D 1 month
20. UK (3-month LIBOR-CPI inflation) CEIC D 1 month
World electronics (5)
21. Global semiconductor sales* CEIC Dln 2 months
22. US new orders for elec-
tronics (excl. semiconductors)

US Census Bureau Dln 2 months

23. US electronics shipments-
to-inventories ratio for elec-
tronics

US Census Bureau Dln 2 months

24. PPI for US electronics FRED None 1 month
World prices (4)
25. OPEC Crude oil price CEIC Dln 1 month
26. Global food price index* FRED Dln 1 month
27. Global non-fuel price index FRED Dln 1 month
28. Global commodity price index FRED Dln 1 month
Industrial production (7)
29. Industrial production index (IPI) Department of

Statistics, Singa-
pore (DOS)

Dln 1 month

30. IPI: Biomedicals DOS Dln 1 month
31. IPI: Transport engineering DOS Dln 1 month
32. IPI: Precision engineering DOS Dln 1 month
33. IPI: General manufacturing DOS Dln 1 month
34. IPI: Electronics DOS Dln 1 month
35. IPI: Chemicals DOS Dln 1 month

123



826 H. K. Chow et al.

Data Source Transformation Publication lag

Business surveys (3)
36. General manufacturing expectations CEIC None 1 month
37. Manufacturing: stocks of finished goods CEIC None 1 month
38. Manufacturing: new orders arrived CEIC None 1 month
Sectoral Indicators (11)
39. Retail sales index CEIC Dln 2 months
40. Retail sales value* CEIC Dln 2 months
41. Car registrations Above 1600cc* CEIC Dln 1 month
42. Car registrations Below 1600cc* CEIC Dln 1 month
43. Visitor arrivals CEIC Dln 1 month
44. Air cargo loaded* CEIC Dln 1 month
45. Air cargo discharged* CEIC Dln 1 month
46. Sea cargo handled* CEIC Dln 1 month
47. Electricity generation* CEIC Dln 2 months
48. Formation of companies* CEIC Dln 1 month
49. Construction contracts awarded (BCA) CEIC None 2 months
External Trade (12)
50. Total imports CEIC Dln 1 month
51. Imports: non-oil CEIC Dln 1 month
52. Imports: oil CEIC Dln 1 month
53. Total exports CEIC Dln 1 month
54. Exports: non-oil CEIC Dln 1 month
55. Exports: oil CEIC Dln 1 month
56. Domestic exports CEIC Dln 1 month
57. Domestic exports: non-oil CEIC Dln 1 month
58. Domestic exports: oil CEIC Dln 1 month
59. Re-exports CEIC Dln 1 month
60. Re-exports: non-oil CEIC Dln 1 month
61. Re-exports: oil CEIC Dln 1 month
Price Indices (7)
62. Export price index CEIC Dln 1 month
63. Export price index: non-oil CEIC Dln 1 month
64. Import price index CEIC Dln 1 month
65. Import price index: non-oil CEIC Dln 1 month
66. Consumer price index CEIC Dln 1 month
67. Domestic supply price index CEIC Dln 1 month
68. Manufactured products price index CEIC Dln 1 month
Financial (18)
69. Straits Times Index CEIC Dln None
70. 1-year treasury bill yield CEIC D None
71. 2-year treasury bill yield CEIC D None
72. 5-year treasury bill yield CEIC D None
73. 10-year treasury bill yield CEIC D None
74. 3-month SIBOR CEIC D 1 month
75. Yield spread# (10-year minus 3-month SIBOR) CEIC None 1 month
76. Singapore dollar to Australian dollar CEIC Dln None
77. Singapore dollar to Pound CEIC Dln None
78. Singapore dollar to Renminbi CEIC Dln None
79. Singapore dollar to Euro CEIC Dln None
80. Singapore dollar to Hong Kong dollar CEIC Dln None
81. Singapore dollar to Yen CEIC Dln None
82. Singapore dollar to Ringgit CEIC Dln None
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Data Source Transformation Publication lag

83. Singapore dollar to US dollar CEIC Dln None
84. Singapore dollar to Franc CEIC Dln None
85. Nominal effective exchange rate CEIC Dln 1 month
86. Real effective exchange rate CEIC Dln 1 month
Monetary (9)
87. M1 CEIC Dln 1 month
88. M2 CEIC Dln 1 month
89. M3 CEIC Dln 1 month
90. Loans advances CEIC Dln 1 month
91. Loans advances: manufacturing CEIC Dln 1 month
92. Loans advances: construction CEIC Dln 1 month
93. Loans advances: commerce* CEIC Dln 1 month
94. Loans advances: financial institutions CEIC Dln 1 month
95. Loans advances: individuals CEIC Dln 1 month

Series marked with asterisk ‘*’ are seasonally adjusted via the X-13 ARIMA procedure. Yield spreads
marked with ‘#′ are calculated using 10-year treasury bill yield at the long end of the term structure instead
of higher maturity treasury bills due to data availability issue
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